Isometric Immersions and Compensated Compactness

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometric Immersions and Compensated Compactness

A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold M2 which can be realized as isometric immersions into R3. This problem can be formulated as initial and/or boundary value problems for a system of nonlinear partial differential equations of mixed elliptic-hyperbolic type whose mathematical theory is largely incomplete. I...

متن کامل

On isometric Lagrangian immersions

This article uses Cartan-Kähler theory to show that a small neighborhood of a point in any surface with a Riemannian metric possesses an isometric Lagrangian immersion into the complex plane (or by the same argument, into any Kähler surface). In fact, such immersions depend on two functions of a single variable. On the other hand, explicit examples are given of Riemannian three-manifolds which ...

متن کامل

Isometric immersions into Lorentzian products

We give a necessary and sufficient condition for an n-dimensional Riemannian manifold to be isometrically immersed into one of the Lorentzian products Sn×R1 or Hn×R1. This condition is expressed in terms of its first and second fundamental forms, the tangent and normal projections of the vectical vector field. As applications, we give an equivalent condition in a spinorial way and we deduce the...

متن کامل

Compensated Compactness and the Heisenberg Group

Jacobians of maps on the Heisenberg group are shown to map suitable group Sobolev spaces into the group Hardy space H1. From this result and a weak∗ convergence theorem for the Hardy space H1 of the Heisenberg group, a compensated compactness property for these Jacobians is obtained. 0. Introduction We investigate compensated compactness properties of Jacobians of maps on the Heisenberg group a...

متن کامل

Ultraparabolic H-measures and compensated compactness

We present a generalization of compensated compactness theory to the case of variable and generally discontinuous coefficients, both in the quadratic form and in the linear, up to the second order, constraints. The main tool is the localization properties for ultra-parabolic H-measures corresponding to weakly convergent sequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2009

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-009-0955-5